Rankin-Selberg method for Siegel cusp forms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonance sums for Rankin–Selberg products of SLm(Z) Maass cusp forms

a r t i c l e i n f o a b s t r a c t Let f and g be Maass cusp forms for SL m (Z) and SL m (Z), respectively, with 2 ≤ m ≤ m. Let λ f ×g (n) be the normalized coefficients of L(s, f × g), the Rankin–Selberg L-function for f and g. In this paper the asymptotics of a Voronoi-type summation formula for λ f ×g (n) are derived. As an application estimates are obtained for the smoothly weighted aver...

متن کامل

The Rankin-Selberg method for automorphic distributions

We recently established the holomorphic continuation and functional equation of the exterior square L-function for GL(n,Z), and more generally, the archimedean theory of the GL(n) exterior square L-function over Q. We refer the reader to our paper [15] for a precise statement of the results and their relation to previous work on the subject. The purpose of this note is to give an account of our...

متن کامل

Subconvexity for Rankin-selberg L-functions of Maass Forms

This is a joint work with Yangbo Ye. We prove a subconvexity bound for Rankin-Selberg L-functions L(s, f⊗g) associated with a Maass cusp form f and a fixed cusp form g in the aspect of the Laplace eigenvalue 1/4 + k2 of f , on the critical line Res = 1/2. Using this subconvexity bound, we prove the equidistribution conjecture of Rudnick and Sarnak on quantum unique ergodicity for dihedral Maass...

متن کامل

On Rankin-cohen Brackets for Siegel Modular Forms

We determine an explicit formula for a Rankin-Cohen bracket for Siegel modular forms of degree n on a certain subgroup of the symplectic group. Moreover, we lift that bracket via a Poincaré series to a Siegel cusp form on the full symplectic group.

متن کامل

Rankin-Cohen Operators for Jacobi and Siegel Forms

For any non-negative integer v we construct explicitly ⌊v2⌋+1 independent covariant bilinear differential operators from Jk,m × Jk′,m′ to Jk+k′+v,m+m′ . As an application we construct a covariant bilinear differential operator mapping S (2) k ×S (2) k′ to S (2) k+k′+v. Here Jk,m denotes the space of Jacobi forms of weight k and index m and S (2) k the space of Siegel modular forms of degree 2 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1990

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000003226